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The stability of laminar axisymmetric jets and wakes, the two prominent ex- 
amples of free shear layers, is investigated with respect to linear azimuthally 
periodic disturbances. The complete viscous disturbance equations are integrated 
numerically and the eigenvalues are obtained by matching the numerically 
advanced solutions to the asymptotic solutions a t  a large radius. Both spatial 
and temporal stability are examined for inviscid and viscid flows. It is found that 
the critical Reynolds number for the jet and the wake are not much different 
while the amplification rates for the wake become considerably greater than those 
for the jet as the Reynolds number increases. The axisymmetric shear-layer 
flows also seem to be more stable than the corresponding plane flows. 

1. Introduction 
The stability of plane free shear layers has been investigated by numerous 

authors for many years; however, the analysis of the stability of axisymmetric 
free shear layers has only received scant attention. It is felt that there has been 
a tacit assumption that the difference between plane and cylindrical geometry 
does not have a significant effect on the stability characteristics of such flows; 
such an assumption is not fully borne out by the present investigation. Jets and 
wakes are two prominent examples of axisymmetric free shear layers which 
occur commonly. It is necessary to have a knowledge of the stability, transition 
and transport properties of such flows. Such information is useful, for example, 
in chemical reactor and combustor design in the case of jets and €or drag calcula- 
tions in the case of wakes. 

Batchelor & Gill (1962) presented a detailed analytical treatment for the in- 
viscid instability of free axisymmetric flows, in particular jets. Rayleigh (1892) 
determined that the necessary condition for the existence of amplified distur- 
bances in such flows is that 

&(r) = rUi’/(n2+a2r2) (1.1) 

should have a numerical maximum somewhere in the fluid. This condition is 
an analogue of the requirement of a maximum of mean vorticity for plane parallel 
flows. In  Rayleigh’s work, a and n are respectively the axial and azimuthal 
wavenumbers of the Fourier components of the disturbance, U(r )  is the mean 
flow velocity and r is the radial co-ordinate. This condition defines the range of 
the parameters CI. and n for which the flow can be unstable. Batchelor & Gill, 
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using an even more restrictive condition, showed that there is one and only one 
neutral disturbance (a  =+ 0) for the far jet profile ( U  = I/( 1 + r2)2)  and that it is 
possible only when n = 1, They also computed the neutral wavenumber for this 
profile and provided the amplification curves for a top-hat jet. 

The results of the experimental work regarding the stability of submerged 
circular jets have not been conclusive. Villu (1962) obtained a critical Reynolds 
number for instability of about 10. Reynolds (1962) reported presumably un- 
published results by Schade, who found that a long, nearly rectilinear jet could 
be maintained a t  a Reynolds number of several hundred. His own investigation 
inspired by this contradiction revealed several modes of instability for Reynolds 
numbers R from nearly 10 onwards. In  particular, he found axisymmetric con- 
densations over a range of R from 50 to 250 and sinuous undulations of long wave- 
length at  an R near 100. As the unstable axisymmetric disturbances are ruled out 
by the inviscid theory, Gill (1962) suggested that the growth of small but finite 
disturbances is responsible for the condensations in the viscous fluid. McNaugh- 
ton & Sinclair (1966) carried out a similar experiment with varying sizes of jet 
orifices and containing vessels over a Reynolds-number range of 100-28000 and 
reported modes of breakdown similar to those obtained by Reynolds. They 
presented their results in the form of a relation for the laminar length and it is 
difficult to obtain a critical Reynolds number from their investigation. Kambe 
(1969) studied the stability of the jet with a parabolic profile by asymptotic 
methods in the limits of small aR and large aR and calculated a critical Reynolds 
number of 32.8 for the sinuous mode. His examination showed that the amplified 
disturbances did not exist for the rotationally symmetric (n = 0) mode and that 
the n = 1 mode was more unstable than the n = 2 mode. 

Sato & Okada (1966) made an experimental study of the instability and 
transition of the wake behind an axisymmetric slender body at  high Reynolds 
number. Their measurements indicated the existence of a laminar wake past the 
tip of the body which gradually developed into a turbulent wake. It was dif- 
ferent from the wake produced by bluff bodies, where the turbulent eddies arising 
a t  the separation point dominate the further flow and a laminar wake develops 
gradually a t  relatively large distances downstream as the Reynolds number 
decreases with the distance. The measured mean velocity profile resembled the 
theoretical similarity profile for a considerable distance. They reported a good 
comparison between their experimental results and the theoretical calculations 
based on the linearized inviscid disturbance equations. Using the condition 
specified by Batchelor & Gill, they found that neutral disturbances could exist 
only for the n = 1 and n = 2 modes; however, their computations revealed that 
only the n = 1 mode was unstable and they also experimentally observed the 
effect of helical disturbances on the stability. Physically the sinuous mode tends 
to flute the whole mass of the fluid like a kinked wire and allows non-zero 
velocities at the axis unlike other modes. On the basis of the results of the above 
and of other axisymmetric flow stability analyses, it  seems most likely that the 
n = 1 mode will be most unstable. So we have carried detailed calculations only 
for this mode (see appendix A). 
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2. Mean flow profiles 
The axially symmetric jet 

We consider a jet of incompressible fluid emerging from a small circular 
orifice into an infinite mass of the same uniform fluid without azimuthalIswir1. 
Schlichting (1955, p. 181) calculated the velocity profile of such a jet using 
boundary-layer theory and assuming a similarity profile away from the orifice. 
Landau (1943) later derived the same profile by using the complete Navier-Stokes 
equations for the case of large momentum flux. He determined the stream 
function for a steady jet due to a force applied at a point the origin, in an un- 
bounded fluid. The angular spread of the jet can be related to the force M :  

3M/npv2 N 3218; 

if M is large. p is the density of the fluid, Y is the kinematic viscosity and So is the 
value of the poIar angle at which streamlines are least distant from the direction 
of the force a t  the origin. The axial velocity U, is given by 

where x is the axial distance from origin, Uo = Svx/r; is the characteristic velocity 
and ro = x tan 8, represents the spread of the jet and is used as the characteristic 
length. The Reynolds number 

So with Uo and ro as the velocity and length scales respectively, the non- 
dimensional velocity distribution for the jet is U = I/( 1 + T ~ ) ~ .  Landau’s solution 
is also valid at  a distance if the jet emerges from a finite orifice instead of a point 
source, the solution being the zeroth-order term in a series expansion in powers 
of the ratio of the orifice dimensions to the distance from the source. 

We assume that the flow is locally parallel. This will be valid if V / U  < 1, 
where B is the radial velocity. For the jet 

0 at r = 0, 

{ o(eo) at r = Yo,  
v/u = 

which is small in our approximation of M large and thus O0 small. Also Uo and 
ro should not vary significantly over a wavelength although R remains constant 
for the jet with increasing axial distance. This requirement is satisfied if ax + 1 or 
if &ar0 R B 1 as ro = x tan B0 N 8x/R. 

It will be convenient to relate the Reynolds number to the volume flux Q ,  
and the area of orifice A ,  which are measurable quantities. This relation depends 
upon the velocity distribution a t  the orifice. It can be easily deduced (see Batchelor 
& Gill) that 

(4/7rA)4 Q/v  for a parabolic velocity distribution, 

(3/7rA)* Q / v  for a uniform velocity distribution. 
R = (  

28-2 
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FIGURE 1. The mean velocity profiles. (a) Axisymmetric jet. ( b )  Axisymmetric wake. 

Thus if R, is the Reynolds number based on the mean velocity &/A with the 
diameter of the orifice as the characteristic length, R = R, and R = & x 34 R, for 
parabolic and uniform velocity distributions respectively. 

The axially symmetric wake 
There are two velocity scales for the wake: one is the uniform velocity away from 
the wake region and the other is related to the velocity defect Us = U,- U ,  
where U is the velocity distribution in the wake region. The velocity defect 
distribution is given by (Rosenhead 1963, p. 455) 

c 

where C is a constant related to the drag experienced by the body and x is the 
axial distance from the origin of the wake. If we choose to non-dimensionalize 
the quantities by using the velocity scale U, = Clx,  which is the maximum value 
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Laminar jet 
Laminar wake 

na 

- 1  
- 1  

12 m S n  

1 0 
+& -*  

TABLE 1. Figure 1 shows the mean velocity profiles for the jet and the wake 

of the velocity defect, and a length scale ro defined as the radial distance a t  which 
the velocity defect is one-quarter of its greatest value at the axis, (2.2) reduces to 

U' = exp ( -ur2), where u = 1-386, ro = (4vxa/U,)*. (2.3) 

U = q - exp ( - ar2), where q = U,lU,. (2.4) 

Thus the non-dimensional velocity distribution in the wake region is found t o  be 

Again the requirement for unidirectional flow is that ax >> 1. 
The value of q varies with U,, which depends on the axial distance x, and so 

the stability problem would have to be solved separately for each particular 
value of q. However, if a: is real as in temporal stability analysis, the axial varia- 
tion of U will only cause axial variation of the real part of the wave speed c 
(leaving U - c same) and will not affect the amplification rate aci. The inversion 
of U can be accounted for by realigning the co-ordinates. So we have adopted 
the Gaussian profile U = exp ( - ar2) for our analysis, which does not change the 
temporal growth rates and varies the frequency. However spatial growth rates 
will vary with q and a general analysis cannot be presented. We have solved the 
spatial stability problem for the Gaussian profile to present a comparison with 
the corresponding problem for the jet in an attempt to study the effect of profile 
variation. 

The velocity scale U, and length scale ro vary with x to maintain the similarity 
of the profile for non-parallel flows. If  U, oc xm, ro cc xn and so R oc xrn+%, m 
and n vary as in table 1 for the above profiles. 

3. Small disturbance equations 
The flow of an incompressible fluid in the absence of external forces is governed - 

by the following equations: 
v.u* = 0, 

au* VP* -+(u*.V)u* = --++V2u*, 
at P" 

where U* = u*(x*, t )  = (u:, u:, u;) and x* = (x*,  r*, $*) in cylindrical GO- 

ordinates. 
The above equations can be non-dimensionalized with respect to a velocity 

scale Uo and a length scale r,. The resulting equations only differ in that v is 
replaced by l/li  in (3.2)) where R is the Reynolds number, given by U,ro/v. 
Let the non-dimensional quantities be represented by eliminating the asterisks 
in (3.1) and (3.2). The velocity field u can be assumed to be the sum of an original 
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steady flow U(x) and an infinitesimal disturbance u’(x, t ) ;  this substitution in 
(3 . i )  and (3.2) yields the conventional linearized disturbance equations. 

In  the case of parallel flows, the undisturbed flow velocity has only an axial 
component. For the axisymmetric jet and the wake, we shall refer to it as U ( r ) .  
The finite energy disturbance quantities can be Fourier analysed and we assume 
the following normal-mode analysis: 

uk = F ( r )  exp [ia(x - c t )  +in$], 
= iG(r) exp [ia(x - c t )  +in$], 

U; = H(r)  exp [ia(x - ct) + in$], 
P‘ = P(r) exp [ia(x - c t )  + in$], 

(3.3) 

where P’ is the kinematic pressure disturbance and P, G ,  H and P are complex 
amplitude functions. a and n are the axial and azimuthal wavenumbers re- 
spectively and c is the complex phase velocity. w = ac represents the frequency 
of the waves. The radial velocity amplitude function is displaced from the other 
velocity and pressure amplitude functions by a phase angle of &T, which results 
in cleaner disturbance equations; the incentive to do so is provided by the 
linearized continuity equation. 

Substitution of (3.3) in the linearized equation yields 

aF + G’ + G/r + nH/r  = 0, (3.4) 

a(U-c)P+U’G+aP =z (3.5) 

a(U-c)G-P’  = 7 1 [ G ” +-G’- 1 ( a2+- n z l ) G - g H ] ,  (3.6) %R 
a ( U - c ) H + T = -  H ” + - H -  1 

nP iR ’ [  r 

where primes denote derivatives with respect to r .  
The boundary conditions differ for various azimuthal modes and are governed 

by the requirement that the amplitudes F ,  Q, H and P be bounded and go 
asymptotically to zero at  r = 00. The boundary conditions are given by 

G(0) + H ( 0 )  = 0, F(O), P(0) finite for n = 0,  

F ( 0 )  = P(0) = 0,  G(O)+H(O) = 0 for n = I, 

P(0) = G(0) = H(0)  = P(0) = 0 for n > I, 

$‘(00) = G ( a )  = H(co) = P(m) = 0 for all n. 

However, not all the boundary conditions are independent. As will be shown 
later, the disturbance equations can be transformed into a set of six first-order 
equations and thus only six boundary conditions are required for the closure of 
the problem. 

The disturbance equations along with the homogeneous boundary conditions 
constitute an eigenvalue problem involving the parameters a, R, c and n. If a 
is real and c = c, + ic,, equation (3.3) shows that the disturbances will grow with 
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time if c, > 0 and will decay if c, < 0. The neutral disturbances are characterized 
by c, = 0. If both a and c are complex and w is real, the disturbances m'll grow 
as e-aix in the axial direction. The criterion for spatial stability not only involves 
the direction in which the travelling waves are amplified but also the direction 
in which the wave energy is convected, determined by the sign of the group 
velocity cg defined as awlaa,., where a,, = Re a. If a, < 0 and c, > 0, i.e. energy is 
carried in the positive x direction, or if ai > 0 and cg < 0,  the flow is unstable. 
If a, > 0 and cg > 0 or if a, < 0 and cs < 0,  the flow is stable. 

When the spatial and the temporal amplification rates are very small, they 
may be related through Gaster's (1962) transformation. However, when ampli- 
fication rates differ widely from zero, a separate analysis is required. It should 
also be observed that both temporal and spatial stability are local phenomena 
which validate the assumption of locally parallel flows. 

If axisymmetricdisturbances (n = 0 )  are considered, (3.9) becomes independent 
of the other equations and the eigenvalue problem can be characterized by a 
fourth-order equation similar to the Orr-Sommerfeld equation in parallel flows. 
Since n = I is expected to be the most unstable mode, we shall only consider the 
case of n = 1 in detail. 

The inviscid disturbance equations are obtained by substituting R = 03 in 
(3.4)-(3.7). The other variables are eliminated in favour of P, yielding a simple 
second-order equation 

and the boundary conditions are P(0) = P(co) = 0. 
Since the disturbance equations do not yield closed-form solutions for an 

arbitrary U ,  it is therefore necessary to resort to numerical techniques to in- 
vestigate the properties of the €1111 family of equations. 

4. Solutions near r = 0 

The boundary conditions a t  r = 0 must be supplemented by the values of the 
derivatives of the variables in order for it to be possible to advance the solutions 
by a numerical step-by-step procedure. The disturbance equations are regularly 
singular a t  r = 0. So the Frobenius method is used to obtain power-series solu- 
tions for the variables F ,  G, H and P near r = 0. The indicia1 equation has roots 
- + (n - I), & nand (n+ I), which differ bypositiveintegers. However thenature 
of the equations is such as to yield three independent solutions satisfying the 
boundary conditions at  r = 0 when the index n- 1 is used. We know that two 
of these solutions correspond to the higher indices. The other three solutions 
involve logarithmic singularities and poles a t  r = 0 and so are discarded. 

The radius of convergence of the power series is limited by the range in which 
the series expansion of U in Y is valid; in the case of the jet, this radius is unity, 
while it is unbounded for the wake. The power series were computed numerically 
by programming the recursion relations. The program was designed to calculate 
enough terms to make the ratio of the magnitude of the last term in the series 
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to that of the partial sum up to that term less than a given small number. I n  
the inviscid case, the Frobenius power-series solution corresponds t o  the root n 
of the second-order indicia1 equation. 

5. Asymptotic sohtions 
The boundary conditions a t  infinity must be transferred to a large but finite 

radius for the successful application of numerical methods. The help of asymp- 
totic solutions valid a t  large r is sought to achieve this. The unperturbed velocity 
U falls off rapidly with r and if it is considered to be zero a t  some large radius, 
the disturbance equations can be exactly solved in terms of modified Bessel 
functions. Then (3.4)-(3.7) can be written as 

aF + G' + G/r + nH/r  = 0, (5.1) 

r 

(5.3) 

where p2 = a2 - iaRc. 
Elimination of all other variables in favour of P yields the Bessel equation 

r 

whose solution satisfying the far boundary condition is K,(ar). Equation (5 .5 )  
can be obtained more easily by taking the divergence of the incompressible 
Navier-Stokes equation and perturbing it. Thus, in a shearless mean flow, the 
pressure disturbances are not affected by the viscosity. The complete solution is 
given by 

{F' G, H ,  P} = {K@")> - K ? W ) / a ,  njq%(ar)/ar, CK,}, (5.6) 

where a prime again denotes partial differentiation with respect to r .  This solution 
is independent of viscosity and is often referred to as the 'non-viscous' mode. 

There are two other 'viscous) modes which have no pressure component and 
satisfy zero boundary conditions at infinity: 

{K G, H ,  P} = {KAPr) ,  - C43Pr)/P2, naKn(Pr)/P2r, O }  

{K G, H ,  P }  = (0, - n ~ , ( p y ) / r ,  K?!Z(Pr), O} .  

(5.7) 

(5.8) and 

However, if U is not considered zero a t  a large radius, but can be expanded in 
a convergent or asymptotic power series in r-l, more accurate asymptotic solu- 
tions can be obtained. I n  the case of the jet 

m 

U =  C ( - i )k (k+I )r -@k+4)  for r > 1. 
k=O 
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It will be now more convenient to write the disturbance equations (3.4)-(3.7) 
in the form of a set of first-order equations 

Y = A(r) Y, 
where 

0 0 0 0 

- -a - 1 
r 
.- 0 

n 
r 
.- 

0 0 0 0 

0 0 

iaR iRU’ 0 

0 2n 
r2 
- iRn 

+ k R U  - (n2 + 1) p+---- 
r2 r 

Consider the case of the jet. The matrix A has a convergent series expansion 
in r--I for r > r,,, where r, is large and a t  least greater than one, of the form 

m 

A(r) = &rFk. 

Following Wasow (1965), uniformly asymptotic expansions for (5.9) can be 
obtained. A, has six eigenvalues a,  - cx, /3, - p, p and - f3 and has six independent 
eigenvectors and so can be diagonalized. In  such a case, the asymptotic solutions 
can be written in the form 

Y(r) = ekrGZ(r), (5.10) 

where the vector Z ( r )  has an asymptotic power-series expansion valid in an 
open sector S of the r plane (if r is complex) with vertex at  the origin and a positive 
central angle not exceeding 7 ~ ,  

k=O 

m 

(5.11) 

K is the diagonal matrix with eigenvalues of A, as its entries. G also turns out to 
be a diagonal matrix, after formal and slightly involved calculations as given by 
Wasow, with each element equal to - 4. The coefficients Z, are found by formally 
substituting (5.10) for Y in (5.1 1) and equating coefficients of equal powers of r-1. 
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These solutions differ in third or higher order terms from the asymptotic series 
of the modified Bessel function solutions previously obtained. Por instance, the 
F component corresponding to the mode (5.7) has the power-series expansion 

The fourth term is corrected by the factor in square brackets and so are all the 
higher terms by various magnitudes. The arduous task of calculating these terms 
analytically was avoided by programming the recursion relations. 

The formal treatment given above can be avoided by taking a cue from the 
asymptotic expansions for modified Bessel functions and assuming the following 
power-series expansions : 

00 

{F ,  G, H ,  P> = ehr Tm {Fk, Gk, Hk, Pk) r-,. (5.13) 

A, m and the coefficients F,, C,, H, and Pk can be obtained by the standard pro- 
cedure of substitution and comparison of the powers of r-l. 

These refined solutions where U need not be very close to zero help in reducing 
the range of integration and thus saving computational time and reducing the 
influence of parasitic numerical errors. Also, in the case of large Reynolds number 
flows, it is preferable to carry the integration from outside to inside, where the 
additional accuracy is very much desirable. However, for small a and ,13, the 
asymptotic power series may start diverging soon and the convergent series in 
powers of r for modified Bessel functions will be much more useful. 

The inviscid disturbance equation reduces to Bessel’s equation if U i s  con- 
sidered as zero and c is not very small as it turns out to be the case. The asymptotic 
solution in this case is K,(ar). 

k=n 

6. Eigenvalue criterion 
The solutions advanced by numerical integration to a large radius have to be 

matched to the asymptotic solutions at  that radius. The matching should be 
such as t o  make the solutions and their derivatives continuous a t  the matching 
point. The set of parameters a, R, c and n that satisfies this condition is defined as 
the eigenvalue. 

Let (yi}, i = 1, ..., 6, represent the vector solution with the variables F ,  G ,  H ,  
P,  F’ and H‘ as its elements. Also let yi, j, j = I, . . . , 3 ,  be the three solutions known 
a t  a large radius ra from the integration procedure. The asymptotic solutions a t  
ra may be defined by yi, j+3, j = 1, . . . , 3 .  As the disturbance equations are linear, 
the matching condition at ra gives 

where theC,, E = 1, ..., 6, arearbitrary complex constants. Equation (6.1) is a set 
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of six linear algebraic equations which yield a non-trivial solution for the C, 
only if 

or in the expanded form, 

D(a,n,c,R) = [yi , j l  = 0 (i,j = 1...6), 

D =  

where the first three columns represent integratedvector solutions yi, j,j = 1, , . . , 3, 
i = 1, ..., 8. 

We can also consider the set of algebraic equations (6.1) and satisfy all but 
one of the equations by fixing an arbitrary value for one of the constants. In  
our case, C, is taken as unity and the other five constants are determined numeric- 
ally by solving the first five equations using the Gram-Schmidt procedure. The 
value of these constants is substituted in the sixth equation to yield a number, 
say B,, which is used in the iteration procedure instead of D. We found that in 
spite of the mathematical similarity of D and D,, the latter proved to provide 
a more efficient criterion for the iterative procedure. This could be because D 
is a relatively intricate function and could involve many undesirable differences 
of almost equal large numbers during computation when it is very small. 

It may be noted here that matching can be carried out at  any point. In  the 
inviscid case, we integrate from outside to inside along a complex path for reasons 
given in the next section. The eigenvalue criterion is given by 

where Pi is the Frobenius solution at  the matching radius and Po is the integrated 
solution at that point. 

7. Numerical techniques 
The Taylor-series method was adopted to integrate the equations frcm near 

r = 0 to a large r where asymptotic solutions are valid. The range of integration 
was taken from r = 0 to r = 3.5 in the case of the jet. At r = 3.5, U is only 0.5 yo 
of its greatest value a t  the centre and can be approximated as zero. The wake 
profile dies out much faster and so the range was reduced t o  0-36, where U is 
only 0.1 % of its central value. The Frobenius solutions were calculated around 
r = B and a step size of 4 was used to advance the solutions. It was found that in 
the inactive region, i.e. away from r = 0 and the critical layer, the step size can 



444 M .  Lessen and P. J .  Singh 

be increased to Q or even 4 without introducing too many additional terms in the 
series. The number of terms to be retained in the Taylor series was programmed 
to vary so as to satisfy an accuracy criterion. This criterion specified that the 
contribution of the last term in the series for different variables and their 
derivatives, like F ,  G ,  H ,  P, P’ and H’, as compared with that of the respective 
partial sums up to that term be less than 10-k in magnitude. k was normally taken 
as six or seven. The above data were varied slightly according to the parameter 
values and test cases were run to determine optimal values. 

The Newton-Raphson method was used to iterate the guessed parameters to 
an eigenvalue. A satisfactory convergence was considered to be achieved when 
consecutive iterations varied only beyond three significant digits. Newton’s 
backward interpolation method was used to obtain the guess for an eigenvalue 
for a certain combination of the parameters a! and R in temporal stability from 
two or more previously known eigenvalues with different sets of parameters. 
Mostly two iterations were enough to produce the required accuracy with such 
a scheme. The eigenvalues were frequently checked by increasing the range of 
integration and retaining more terms in the Taylor series, and were found to 
be unaffected within the limits of desired accuracy. The Reynolds number was 
varied up to a value of 200, where most of the stability characteristics of the 
viscous flow become asymptotic to those of the inviscid flow or varied slowly. 

In  the inviscid case, integration was carried out starting from the asymptotic 
values at large r towards r = 0 as this eliminated the possibility of the desired 
solutions being affected by the unwanted solution. Because of the singularity 
of the inviscid equation a t  the critical point r = r,, the integration was carried 
along a complex path, following Lessen (1949). Since U’(r,) < 0, the proper path 
which will give inviscid eigenvalues asymptotic to viscid eigenvalues at  large 
R lies above the singularity. 

8. Results 
The critical Reynolds number and the critical wavenumber for the axisym- 

metric je6 are found to be 37.9 and 0.40 respectively. Figure 2 shows the a,c 
curve for the inviscid jet flow. The instability occurs only for wavenumbers less 
than the neutral wavenumber, whose value, as given by Batchelor & Gill (1962) 
also, is 1.46. The maximum value of the amplification rate aci is 0-0339 at 
a = 0.79 and ci = 0.0429. The constant temporal amplification curves for the 
viscid jet are shown in figure 3. The curves resemble those for the most of the 
plane free shear layers and a lower branch definitely exists. The values of ci 
at R = 150 and at  large 01 are close to the corresponding inviscid values. The 
curves have been broken and joined with dashed lines representing the inviscid 
results. The lower branches of the curves tend to converge as a decreases towards 
zero and R increases. When a is extremely small (a  z 0) and R is large, the in- 
viscid eigenvalues may not necessarily be asymptotic to  the viscid eigenvalues 
as the related assumption of aR being large breaks down. So, the curves of inviscid 
instability have been discontinued near a = 0. The incomplete dashed lines ex- 
tending the lower branch indicate the probable direction in which they will 
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FIGTJRE 2. Variation of wave speed c, and amplification factor ci 
with a for the inviscid jet. 
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FIGURE 3. a,  R plot showing constant temporal amplification (ci = constant) and constant 
wave speed (c ,  = constant) curves for the jet. The solid lines are broken and joined to 
dashed straight lines representing inviscid values. 
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proceed for still larger R. In  figure 4, the real and imaginary parts a? and ai 
of the wavenumber as obtained from the spatial stability analysis of the inviscid 
jet are plotted against the real frequency w .  Figure 5 shows the constant spatial 
amplification rate (ai = constant) curves. 

It may be noticed from the figures that the viscid amplification rates (temporal 
or spatial) are greater than the corresponding inviscid rates for a certain range 
of wavenumbers. Some computations showed that the values of the former 
exceed the largest values of the latter. For instance, the value of ci at R = 150 and 
a = 0.38 was computed as 0.06413 as opposed to the largest inviscid value of 
ci = 0.05633 at the same wavenumber. These results imply the existence of 
closed loops of constant ci or constant ai not shown in the figures because of lack 
of enough data to draw meaningful curves. The presence of these loops would 
seem to challenge the much stressed assumption that viscosity tends to play 
a stabilizing role alone in free shear layers unless a complete treatment of the 
problem that includes nonlinear and nonparallel effects shows otherwise. It also 
suggests the possibility of existence of a minor neutral stability curve as pro- 
posed by Drazin (1961) for the plane jet. However, viscosity could still tend to 
stabilize the flow near the inviscid region (aR = m; see appendix B). 

Often the length scale used in the case of the wakes is the so-called half-wake 
width, i.e. the distance between the point where the velocity defect has a maxi- 
mum value and the point where its value is half of that. While we calculated our 
results on the basis of this width, we scaled them to the quarter-wake width to 
be consistent with the case of the jet, where the mean velocity falls off to one- 
quarter of the velocity at  the axis in a distance equal to the length scale. Figures 6 
and 7 are the plots of a, c and a, R curves for temporal stability of the wake 
respectively. Figures 8 and 9 represent the spatial stability characteristics of the 
wake in the form of w, G and w ,  R plots. These curves for the wake are smoother 
and indicate higher growth rates beyond the critical Reynolds number, whose 
value is found to be 32.6, the critical wavenumber being 0.58. 

If we compare the mean velocity profiles of the jet and the wake in figure 1, 
we see that they closely resemble each other though the wake profile falls off 
more sharply away from the centre. It can be conjectured that flows with a 
fixed momentum flux M and profiles similar to the above will have critical 
Reynolds numbers (based on M )  close to the values found in the present in- 
vestigation. Kambe’s (1969) analysis of a jet with a continuous but non-smooth 
parabolic profile yielded a critical Reynolds number of 32.8, which is not very 
different from that for the self-similar jet. However, the growth rates vary 
widely as the Reynolds number increases. Figure 10 shows the inviscid temporal 
amplification rates for the top-hat jet (from Batchelor & Gill 1962), the Poiseuille 
profile jet (from Kambe 1969) and for the jet and the wake profiles used in this 
investigation. Figures 11 (a)  and (b )  show the real and imaginary parts of the 
scaled neutrally stable eigenfunction at R = 88 respectively. The eigenfunctions 
at a lower R are found to spread over larger radial distances. This is indicated by 
figures 12(a) and (b) ,  where the real and imaginary parts of the scaled eigen- 
functions corresponding to the minimum critical Reynolds number of: the jet, 
R = 37.9, are plotted. 
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FIGURE 10. Curves of constant amplification rate ac, for different profiles. - - - -, the 
top-hat jet; - - - , the parabolic profile jet ; - - - - , the axisymmetric wake; -, the 
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9. Discussion 
The critical Reynolds number found for the jet (37.9) does not conform with 

the experimental data of Reynolds (1962), who observed the development of 
sinuous mode at near R = 100. The present theoretical treatment excludes the 
non-parallel effects, whose role cannot be accurately guessed. Lessen & KO (1969) 
approximately accounted for the effect of variational velocity and length scales 
in the case of the plane jet and found the results to be stabilizing. Physically it 
represents the dilution of the disturbance energy as the jet progresses. A similar 
analysis for the axisymmetric jet leaves the critical Reynolds number unchanged 
while that for the wake reduces it further. However, the complete effects of non- 
parallelism can only be accounted for by considering the two-dimensional mean 
velocity field to be dependent on both axial and radial co-ordinates. These effects 
could be considerable as the flow does not really satisfy the unidirectionality 
condition (&R 9 1) at R = 38 and a non-dimensional critical wavenumber cx = 0.4. 
Pinite disturbances also need to be examined. At the same time, as Reynolds 
himself concludes, more precise experimentation is required before a final word 
can be said about accurate experimental values. 

It appears that axisymmetric shear-layer flows are more stable than the 
corresponding plane shear-layer flows. The stability of plane Bickley jet has 
been examined by Tatsumi & Kakutani (1958) and Kaplan (1964), among many 
others, and the critical Reynolds number based on velocity and scale lengths 
not much different from those for the axisymmetric jet has been given as only 
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about 4. Lessen I% KO’s correction for non-parallelism raised it to near 10, 
which is still quite a lot smaller than that for the round jet. There does not 
appear to be much data to compare effectively with the results for the wake. On 
the basis of observations by Sat0 & Okada, it can be said that the amplification 
rate at  large R should compare well with experimental measurements. It can 
also be expected that the critical Reynolds number for the axisymmetric wake 
will be much larger than that for the plane wake. 

The authors acknowledge their indebtedness to the National Science Pounda- 
tion for partial support of this research. 

Appendix A 
In  $1, it was suggested, for reasons based on physical arguments and the 

study of the inviscid behaviour, that only the n = 1 mode was likely to be most 
unstable. To put this argument on a solid and firm basis, some calculations were 
made for the n = 0 and n = 2 modes. 

The n = 0 mode 
Substituting n = 0 in (3.4)-(3.7), we notice that the azimuthal component of the 
disturbance becomes independent of the other components and the equations 
reduce to 

aF + G’ + G/r = 0, (A 1) 

(A 2) 

(A 3) 

(A 4) 

1 
%R 

1 

a( U - c )  F + U’G+aP = [F”+ F’/r-a2F], 

o ~ ( U - C ) G - P ’ =  5- G +  c‘- a’+- G , %R “ r ( It.)] 
along with boundary conditions 

F(O), P(0) finite (F‘(0) = P’(0) = 0) ,  G ( 0 )  = 0. 

The above equations constitute a set of four first-order equations and can be 
reduced to one fourth-order equation analogous to the Orr-Sommerfeld equation 
in plane flows. 

The procedure to solve the equation is similar to the one followed for then = 1 
mode. The Frobenius power-series solution near the axis, which satisfied the 
boundary conditions at r = 0, is calculated from the recursive relations. The 
asymptotic solutions can be obtained by substituting n = 0 in expressions in 
€j 5. The determinant D, whose zeros give the eigenvalues, reduces to 

The eigenvalues are calculated by the iterative technique detailed in 0 7. 
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Sample calculations were made to examine the spatial stability of the jet. 
At a fixed Reynolds number R = 75 (double the value of the critical Reynolds 
number), a wide range of frequencies w (0.005-0.025) was explored. The eigen- 
values for two different modes are sketched in the curve in figure 13. Mode I1 
is less stable than mode I but is still very highly damped. There may exist many 
other modes with still greater damping rates but they are of no significance. The 
Reynolds number was then gradually increased a t  a fixed frequency w = 0.005 
corresponding to the lowest calculated value of ai. 

The value of ai decreased but still was quite large at  a Reynolds number of 
150 (at R = 75, as = 0.3775; at R = 150, ai = 0.2109). Thus then = 0 mode does 
not cause instability a t  Reynolds number in the range 0-150 and most likely 
is absolutely stable as there is no corresponding inviscid instability. 

The 12 = 2 mode 
The eigenvalues for the n = 2 or higher modes can be obtained by substituting 
the related value of n in $ 5  2-6. The Frobenius power-series solutions satisfy the 
zero boundary conditions for the amplitudes G and H if n > 1.  

Again, a representative calculation was made to examine the temporal stability 
of the jet. The eigenvalues were computed at a fixed Reynolds number of 75 
with 01 varying from 0.2 to 1.5 (see figure 14). This mode is again highly damped 
with minimum ci near -0.095. There is a sharp dip in the damping rate near 
a = 0.45 but it increases again for 01 less than 0.3. Sample calculations were made 
€or Reynolds numbers up to 150 and these showed no significant variation in the 
damping rate (for a = 0.45, ci = - 0-1223 at R = 75, ci = - 0.1192 at R = 150). 
As no instability exists for the inviscid case, it is likely that the n = 2 and the 
higher modes are absolutely stable. 

Appendix B 
In  8 8, it was suggested that the a, R curves contain closed loops of constant 

growth rates and that there may be a minor neutrality curve in analogy with 
that for the plane jet proposed by Drazin. 

A representative computation of eigenvalues a t  high Reynolds number was 
made to examine the above propositions and to study the behaviour of the lower 
branches of constant amplification rate curves. The temporal eigenvalues were 
computed for the case of the jet a t  a fixed wavenumber of 0.1 and at  various 
Reynolds numbers progressing up to 4000. Then, with the Reynolds number fixed, 
the wavenumber was gradually decreased to a very small value. The numerical 
procedure worked efficiently; however, for Reynolds numbers greater than 2000, 
the orthonormalization procedure was incorporated (Conte 1964) as a precaution, 
the solutions being periodically orthonormalized to eliminate the disastrous 
effect of parasitic error destroying the linear independence of solutions. 

The results are illustrated in figures 15 and 16. The temporal amplification 
rate ci increases beyond the inviscid value (corresponding to the wavenumber 
0-1) at a Reynolds number of approximately 260, acquires a maximum value 
near R = 800 and then gradually dips toward the inviscid value. Figure 16 shows 
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FIGURE 16. a,c curve for the viscid jet at R = 4000. 

the variation of cr and ci with a as 01. is decreased from 0.1 to 0.002 at the fixed 
Reynolds number R = 4000. The growth rate ci increases to a maximum value 
( = 0.0178) at about a = 0.0175 and then falls sharply to zero for a near 0.002. 
This illustrates that the lower branches of constant growth rate curves, as is true 
for the other flows, keep on piling up and shifting towards a = 0 as the Reynolds 
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number increases. There was no indication of a minor neutral stability curve, 
at  least up to R = 4000, and its presence for the moment can be ruled out. It was 
also coniirmed that viscosity does play a role in destabilization in at least some 
free flows because of the existence of viscid growth rates higher than the corres- 
ponding inviscid growth rates. 
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